

(541) 929-5650 Fax (541) 929-5277 www.wetlabs.com

Scattering Meter Calibration Sheet

3/23/2016

Wavelength: 412 S/N BB9-279

Use the following equation to obtain "scaled" output values:

$\beta(\theta_c) \text{ m}^{-1} \text{ sr}^{-1} = \text{Scale Factor } \times \text{ (Output - Dark Counts)}$

• Scale Factor for 412 nm = 2.969E-05 (m⁻¹sr⁻¹)/counts

Output = meter reading counts

• Dark counts = 53 counts

Instrument Resolution = 1.8 counts 5.25E-05 (m⁻¹sr⁻¹)

Definitions:

- Scale Factor: Calibration scale factor, $\beta(\theta_c)$ /counts. Refer to User's Guide for derivation.
- Output: Measured signal output of the scattering meter.
- Dark Counts: Signal obtained by covering detector with black tape and submersing sensor in water.

Instrument Resolution: Standard deviation of 1 minute of collected data.

BB9-279 412nm Revision S 10/4/07

(541) 929-5650 Fax (541) 929-5277 www.wetlabs.com

Scattering Meter Calibration Sheet

3/23/2016

Wavelength: 440 S/N BB9-279

Use the following equation to obtain "scaled" output values:

$$\beta(\theta_c) \text{ m}^{-1} \text{ sr}^{-1} = \text{Scale Factor } \times \text{ (Output - Dark Counts)}$$

• Scale Factor for 440 nm = 1.226E-05 (m⁻¹sr⁻¹)/counts

• Output = meter reading counts

Dark Counts= 58 counts

Instrument Resolution = 1.4 counts 1.72E-05 (m⁻¹sr⁻¹)

Definitions:

- Scale Factor: Calibration scale factor, $\beta(\theta_c)$ /counts. Refer to User's Guide for derivation.
- Output: Measured signal output of the scattering meter.
- Dark Counts: Signal obtained by covering detector with black tape and submersing sensor in water.

Instrument Resolution: Standard deviation of 1 minute of collected data.

(541) 929-5650 Fax (541) 929-5277 www.wetlabs.com

Scattering Meter Calibration Sheet

3/23/2016

Wavelength: 488 S/N BB9-279

Use the following equation to obtain "scaled" output values:

$\beta(\theta_c)$ m⁻¹ sr⁻¹ = Scale Factor x (Output - Dark Counts)

• Scale Factor for 488 nm = 1.210E-05 (m⁻¹sr⁻¹)/counts

Output = meter reading counts

• Dark counts = 54 counts

Instrument Resolution = 1.1 counts $1.33\text{E}-05 \text{ (m}^{-1}\text{sr}^{-1})$

Definitions:

- Scale Factor: Calibration scale factor, $\beta(\theta_c)$ /counts. Refer to User's Guide for derivation.
- Output: Measured signal output of the scattering meter.
- Dark Counts: Signal obtained by covering detector with black tape and submersing sensor in water.

Instrument Resolution: Standard deviation of 1 minute of collected data.

BB9-279 488nm Revision C 10/2/07

(541) 929-5650 Fax (541) 929-5277 www.wetlabs.com

Scattering Meter Calibration Sheet

3/23/2016

Wavelength: 510 S/N BB9-279

Use the following equation to obtain "scaled" output values:

$\beta(\theta_c)$ m⁻¹ sr⁻¹ = Scale Factor x (Output - Dark Counts)

• Scale Factor for 510 nm = 8.293E-06 (m⁻¹sr⁻¹)/counts

• Output = meter reading counts

• Dark counts = 60 counts

Instrument Resolution = 1.3 counts 1.09E-05 (m⁻¹sr⁻¹)

Definitions:

- Scale Factor: Calibration scale factor, $\beta(\theta_c)$ /counts. Refer to User's Guide for derivation.
- Output: Measured signal output of the scattering meter.
- Dark Counts: Signal obtained by covering detector with black tape and submersing sensor in water.

Instrument Resolution: Standard deviation of 1 minute of collected data.

BB9-279 510nm Revision C 10/2/07

(541) 929-5650 Fax (541) 929-5277 www.wetlabs.com

Scattering Meter Calibration Sheet

3/23/2016

Wavelength: 532 S/N BB9-279

Use the following equation to obtain "scaled" output values:

$\beta(\theta_c) \text{ m}^{-1} \text{ sr}^{-1} = \text{Scale Factor } \times \text{ (Output - Dark Counts)}$

• Scale Factor for 532 nm = 8.098E-06 (m⁻¹sr⁻¹)/counts

• Output = meter reading counts

• Dark Counts = 57 counts

Instrument Resolution = 1.0 counts 8.12E-06 (m⁻¹sr⁻¹)

Definitions:

- Scale Factor: Calibration scale factor, $\beta(\theta_c)$ /counts. Refer to User's Guide for derivation.
- Output: Measured signal output of the scattering meter.
- Dark Counts: Signal obtained by covering detector with black tape and submersing sensor in water.

Instrument Resolution: Standard deviation of 1 minute of collected data.

(541) 929-5650 Fax (541) 929-5277 www.wetlabs.com

Scattering Meter Calibration Sheet

3/23/2016

Wavelength: 595 S/N BB9-279

Use the following equation to obtain "scaled" output values:

$\beta(\theta_c)$ m⁻¹ sr⁻¹ = Scale Factor x (Output - Dark Counts)

• Scale Factor for 595 nm = 5.758E-06 (m⁻¹sr⁻¹)/counts

Output = meter reading counts

• Dark counts = 57 counts

Instrument Resolution = 1.1 counts 6.22E-06 (m⁻¹sr⁻¹)

Definitions:

- Scale Factor: Calibration scale factor, $\beta(\theta_c)$ /counts. Refer to User's Guide for derivation.
- Output: Measured signal output of the scattering meter.
- Dark Counts: Signal obtained by covering detector with black tape and submersing sensor in water.

Instrument Resolution: Standard deviation of 1 minute of collected data.

BB9-279 595nm Revision C 10/2/07

(541) 929-5650 Fax (541) 929-5277 www.wetlabs.com

Scattering Meter Calibration Sheet

3/23/2016

Wavelength: 660 S/N BB9-279

Use the following equation to obtain "scaled" output values:

$$\beta(\theta_c) \text{ m}^{-1} \text{ sr}^{-1} = \text{Scale Factor } x \text{ (Output - Dark Counts)}$$

• Scale Factor for 660 nm = 3.576E-06 (m⁻¹sr⁻¹)/counts

Output = meter reading counts

Dark Counts=57 counts

Instrument Resolution = 1.4 counts 5.01E-06 (m⁻¹sr⁻¹)

Definitions:

- Scale Factor: Calibration scale factor, $\beta(\theta_c)$ /counts. Refer to User's Guide for derivation.
- Output: Measured signal output of the scattering meter.
- Dark Counts: Signal obtained by covering detector with black tape and submersing sensor in water.

Instrument Resolution: Standard deviation of 1 minute of collected data.

(541) 929-5650 Fax (541) 929-5277 www.wetlabs.com

Scattering Meter Calibration Sheet

3/23/2016

Wavelength: 676 S/N#: BB9-279

Use the following equation to obtain "scaled" output values:

$\beta(\theta_c)$ m⁻¹ sr⁻¹ = Scale Factor x (Output - Dark Counts)

• Scale Factor for 676 nm = 4.128E-06 (m⁻¹sr⁻¹)/counts

• Output = meter reading counts

• Dark counts = 54 counts

Instrument Resolution = 1.0 counts 4.21E-06 ($m^{-1}sr^{-1}$)

Definitions:

- Scale Factor: Calibration scale factor, $\beta(\theta_c)$ /counts. Refer to User's Guide for derivation.
- Output: Measured signal output of the scattering meter.
- Dark Counts: Signal obtained by covering detector with black tape and submersing sensor in water.

Instrument Resolution: Standard deviation of 1 minute of collected data.

BB9-279 676nm Revision C 10/2/07

(541) 929-5650 Fax (541) 929-5277 www.wetlabs.com

Scattering Meter Calibration Sheet

3/23/2016

Wavelength: 715 S/N BB9-279

Use the following equation to obtain "scaled" output values:

$\beta(\theta_c) \text{ m}^{-1} \text{ sr}^{-1} = \text{Scale Factor } x \text{ (Output - Dark Counts)}$

• Scale Factor for 715nm = 3.426E-06 (m⁻¹sr⁻¹)/counts

Output = meter reading counts

Dark Counts= 56 counts

Instrument Resolution = 1.2 counts 4.15E-06 (m⁻¹sr⁻¹)

Definitions:

- Scale Factor: Calibration scale factor, $\beta(\theta_c)$ /counts. Refer to User's Guide for derivation.
- Output: Measured signal output of the scattering meter.
- Dark Counts: Signal obtained by covering detector with black tape and submersing sensor in water.

Instrument Resolution: Standard deviation of 1 minute of collected data.